Help For LoopholeIntroductionWelcome to the network Loophole server. The rules of Loophole are below. The Loophole "challenge" command is described here. Other commands are the same for all pbmserv games.
Loophole Rules(Copyright (c) 2008 Mark Steere <mark@marksteeregames.com>)IntroductionLoophole is a two player game played on a hexagonal patterned rhombus with two windows and an initial placement of stones as shown in Figure 1. Each player takes possession of an entire set of stones of one color, black (#) or white (O). Draws cannot occur in Loophole.A B C D E F G H I J K L M N O P Q R S # # # # # # # # # # # # # # # # # # # 1 O . . . . . . . . . . . . . . . . . . . O 1 2 O . . . . . . . . . . . . . . . . . . . O 2 3 O . . . . . . . . . . . . . . . . . . . O 3 4 O . . . . . . . . . . . . # # # . . . . O 4 5 O . . . . . . . . . . . O O . . . O 5 6 O . . . . . . . . . . . O O . . . O 6 7 O . . . . . . . . . . . O O . . . O 6 8 O . . . . . . . . . . . . # # # . . . . O 8 9 O . . . . . . . . . . . . . . . . . . . O 9 10 O . . . . . . . . . . . . . . . . . . . O 10 11 O . . . . . . . . . . . . . . . . . . . O 11 12 O . . . . # # # . . . . . . . . . . . . O 12 13 O . . . O O . . . . . . . . . . . O 13 14 O . . . O O . . . . . . . . . . . O 14 15 O . . . O O . . . . . . . . . . . O 15 16 O . . . . # # # . . . . . . . . . . . . O 16 17 O . . . . . . . . . . . . . . . . . . . O 17 18 O . . . . . . . . . . . . . . . . . . . O 18 19 O . . . . . . . . . . . . . . . . . . . O 19 # # # # # # # # # # # # # # # # # # # A B C D E F G H I J K L M N O P Q R S Figure 1 -- Initial Setup Stone PlacementPlayers take turns adding their stones to unoccupied cells on the board, one stone per turn. Black makes the first placement of the game. Each player will always have a placement available on his turn and must make one.LoopsFigure 2 shows two examples of single node loops. The loop on the left side of the diagram doesn't look like a loop, but stone sequences connecting opposite sides of the board are considered to be loops.Technical note: Loophole is essentially a three dimensional game played on a surface with three identical, symmetrically arranged windows. In this two dimensional adaptation, one of the three windows is stetched outward and downward, forming the large rhombus in the diagrams. A B C D E F G H I J K L M N O P Q R S # # # # # # # # # # # # # # # # # # # 1 O . . . # . . . . . . . . . . . . . . . O 1 2 O . . . # . . . . . . . . # # # . . . . O 2 3 O . . . # . . . . . . . # . . # . . . . O 3 4 O . . . # . . . . . . # . # # # . . . . O 4 5 O . . # . . . . . . # . O O . . . O 5 6 O . # . . . . . . . # . O O . . . O 6 7 O . # . . . . . . . # . O O . . . O 6 8 O . # . . . . . . . # . . # # # . . . . O 8 9 O . # . . . . . . . # . . # . . . . . . O 9 10 O . # . . . . . . . # # # . . . . . . . O 10 11 O . # . . . . . . . . . . . . . . . . . O 11 12 O . # . . # # # . . . . . . . . . . . . O 12 13 O . # . O O . . . . . . . . . . . O 13 14 O . # . O O . . . . . . . . . . . O 14 15 O . # . O O . . . . . . . . . . . O 15 16 O . # . . # # # . . . . . . . . . . . . O 16 17 O . # . . . . . . . . . . . . . . . . . O 17 18 O . # # . . . . . . . . . . . . . . . . O 18 19 O . . # . . . . . . . . . . . . . . . . O 19 # # # # # # # # # # # # # # # # # # # A B C D E F G H I J K L M N O P Q R S Figure 2 -- Single node loops Figure 3 shows a double node loop. A B C D E F G H I J K L M N O P Q R S # # # # # # # # # # # # # # # # # # # 1 O . . . . . . . . . . . . . . . . . . . O 1 2 O . . . . . . . . . . . # # # . . . . . O 2 3 O . . . . . . . . . . # . . # . . . . . O 3 4 O . . . . . . . . . # . . # # # . . . . O 4 5 O . . . . . . . . # . . O O . . . O 5 6 O . . . . . . . # . . . O O . . . O 6 7 O . . . . . . # . . . . O O . . . O 6 8 O . . . . . . # . . . . . # # # . . . . O 8 9 O . . . . . . # . . . . . . # . . . . . O 9 10 O . . . . . # . . . . . . . # . . . . . O 10 11 O . . . . . # . . . . . . . # . . . . . O 11 12 O . . . . # # # . . . . . . # . . . . . O 12 13 O . . . O O . . . # # . . . . . . O 13 14 O . . . O O . . # . . . . . . . . O 14 15 O . . . O O . # . . . . . . . . . O 15 16 O . . . . # # # . # . . . . . . . . . . O 16 17 O . . . . . # . # . . . . . . . . . . . O 17 18 O . . . . . # # . . . . . . . . . . . . O 18 19 O . . . . . . . . . . . . . . . . . . . O 19 # # # # # # # # # # # # # # # # # # # A B C D E F G H I J K L M N O P Q R S Figure 3 -- Double node loop Figure 4 shows another double node loop. Again, this loop doesn't actually look like a loop but is considered to be one in this two dimensional version of Loophole. A B C D E F G H I J K L M N O P Q R S # # # # # # # # # # # # # # # # # # # 1 O . . . # . . . . . . . . . . . . . . . O 1 2 O . . . # . . . . . . . . . . . . . . . O 2 3 O . . . # . . . . . . . . . . . . . . . O 3 4 O . . . # # . . . . . . . # # # . . . . O 4 5 O . . . . # . . . . . . O O . . . O 5 6 O . . . . # . . . . . . O O . . . O 6 7 O . . . . # . . . . . . O O . . . O 6 8 O . . . . # # . . . . . . # # # . . . . O 8 9 O . . . . . # . . . . . . . . . . . . . O 9 10 O . . . . . # . . . . . . . . . . . . . O 10 11 O . . . . . # . . . . . . . . . . . . . O 11 12 O . . . . # # # . . . . . . . . . . . . O 12 13 O . . . O O . . . . . . . . . . . O 13 14 O . . . O O . . . . . . . . . . . O 14 15 O . . . O O . . . . . . . . . . . O 15 16 O . . . . # # # . . . . . . . . . . . . O 16 17 O . . . . . # . . . . . . . . . . . . . O 17 18 O . . . . . # . . . . . . . . . . . . . O 18 19 O . . . . # . . . . . . . . . . . . . . O 19 # # # # # # # # # # # # # # # # # # # A B C D E F G H I J K L M N O P Q R S Figure 4 -- Double node loop Figure 5 shows a triple node loop. A B C D E F G H I J K L M N O P Q R S # # # # # # # # # # # # # # # # # # # 1 O . . . . . . . . . . . . . . . # . . . O 1 2 O . . . . . . . . . . . . . . # . . . . O 2 3 O . . . . . . . . . . . . . # . . . . . O 3 4 O . . . . . . . . . . . . # # # . . . . O 4 5 O . . . . . . . . . . . O O . . . O 5 6 O . . . . . . . . . . . O O . . . O 6 7 O . . . . . . . . . . . O O . . . O 6 8 O . . . . . . . . . . . . # # # . . . . O 8 9 O . . . . . . . . . . . . . # . . . . . O 9 10 O . . . . . . . # # # # # # . . . . . . O 10 11 O . . . . . . # . . . . . . . . . . . . O 11 12 O . . . . # # # . . . . . . . . . . . . O 12 13 O . . . O O . . . . . . . . . . . O 13 14 O . . . O O . . . . . . . . . . . O 14 15 O . . . O O . . . . . . . . . . . O 15 16 O . . . . # # # . . . . . . . . . . . . O 16 17 O . . . . . # . . . . . . . . . . . . . O 17 18 O . . . . # . . . . . . . . . . . . . . O 18 19 O . . . . # . . . . . . . . . . . . . . O 19 # # # # # # # # # # # # # # # # # # # A B C D E F G H I J K L M N O P Q R S Figure 5 -- Triple node loop Object of the GameTo win you must form at least two loops. Each of the two loops must be a single node loop, a double node loop, or a triple node loop. The two loops must be topographically distinct. Two loops of the same type (e.g. two double node loops) that use the same set of nodes are not topographically distinct. For example, in Figure 6 Black has not won because the two single node loops use the same node.A B C D E F G H I J K L M N O P Q R S # # # # # # # # # # # # # # # # # # # 1 O . . . . . . . . . . . . . . . . . . . O 1 2 O . . . . . . . . . . . . . . . . # # . O 2 3 O . . . . . . . . . . . # # . . # . # . O 3 4 O . . . . . . . . . . # . # # # . . # . O 4 5 O . . . . . . . . . # . O O . # . O 5 6 O . . . . . . . . . # . O O . # . O 6 7 O . . . . . . . . . # . O O . # . O 6 8 O . . . . . . . . . # . . # # # . # . . O 8 9 O . . . . . . . . . # # . # . # # . . . O 9 10 O . . . . . . . . . . # # . . . . . . . O 10 11 O . . . . . . . . . . . . . . . . . . . O 11 12 O . . . . # # # . . . . . . . . . . . . O 12 13 O . . . O O . . . . . . . . . . . O 13 14 O . . . O O . . . . . . . . . . . O 14 15 O . . . O O . . . . . . . . . . . O 15 16 O . . . . # # # . . . . . . . . . . . . O 16 17 O . . . . . . . . . . . . . . . . . . . O 17 18 O . . . . . . . . . . . . . . . . . . . O 18 19 O . . . . . . . . . . . . . . . . . . . O 19 # # # # # # # # # # # # # # # # # # # A B C D E F G H I J K L M N O P Q R S Figure 6 -- Black has not wonIn Figure 2 Black has won with two distinct single node loops. In Figure 7 Black has won with a single node loop and a double node loop. Note that loops of different types that share nodes are topographically distinct. A B C D E F G H I J K L M N O P Q R S # # # # # # # # # # # # # # # # # # # 1 O . . . . . . . . . . . . . . # . . . . O 1 2 O . . . . . . . . . . . . . . # . . . . O 2 3 O . . . . . . . . . . . # # # . . . . . O 3 4 O . . . . . . . . . . # . # # # . . . . O 4 5 O . . . . . . . . . # . O O . . . O 5 6 O . . . . . . . . . # . O O . . . O 6 7 O . . . . . . . . . # . O O . . . O 6 8 O . . . . . . . . . # . . # # # . . . . O 8 9 O . . . . . . . . . # . . . # . . . . . O 9 10 O . . . . . . . . . # . . . # . . . . . O 10 11 O . . . . . . . . . # . . # . . . . . . O 11 12 O . . . . # # # . . # # # . . . . . . . O 12 13 O . . . O O . . . # . . . . . . . O 13 14 O . . . O O . . . # . . . . . . . O 14 15 O . . . O O . . . # . . . . . . . O 15 16 O . . . . # # # . . . # . . . . . . . . O 16 17 O . . . . . . . . . . # . . . . . . . . O 17 18 O . . . . . . . . . . # . . . . . . . . O 18 19 O . . . . . . . . . . # . . . . . . . . O 19 # # # # # # # # # # # # # # # # # # # A B C D E F G H I J K L M N O P Q R S Figure 7 -- Black winsIn Figure 8 Black has won with a single node loop, a double node loop, and a triple node loop. A B C D E F G H I J K L M N O P Q R S # # # # # # # # # # # # # # # # # # # 1 O . . # . . . . . . . . . . . . . . . . O 1 2 O . # . . . . . . . . # # # . . . . . . O 2 3 O . # # . . . . . # # . . # . . . . . . O 3 4 O . . # . . . . # . . . . # # # . . . . O 4 5 O . . # . . . . # . . . O O . . . O 5 6 O . . # . . . . # . . . O O . . . O 6 7 O . # . . . . # . . . . O O . . . O 6 8 O # . . . . . # . . . . . # # # . . . . O 8 9 O # . . . . . # . . . . . . . # . . . . O 9 10 O # . . . . . # . . . . . . . # . . . . O 10 11 O # . . . . # . . . . . . . # . . . . . O 11 12 O # . . . # # # . . . . . . # . . . . . O 12 13 O # . . O O . . . . . # . . . . . O 13 14 O # . . O O . . . . . # # . . . . O 14 15 O # # . O O . . . . . . # . . . . O 15 16 O . # . . # # # . . . . . . . # . . . . O 16 17 O . # . . . # . . . . . . . # . . . . . O 17 18 O # . . . . # . . . . . . . # . . . . . O 18 19 O # . . . # . . . . . . . # . . . . . . O 19 # # # # # # # # # # # # # # # # # # # A B C D E F G H I J K L M N O P Q R S Figure 8 -- Black wins
|
||||||